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Abstract
We study the Schrödinger equation of the hydrogen atom in the (arbitrarily)
strong magnetic field in two dimensions, which is an integrable and separable
system. The energy spectrum is very interesting as it has infinitely many
accumulation points located at the values of the Landau energy levels of a free
electron in the uniform magnetic field. In the polar coordinates, the canonical
(not kinetic!) angular momentum has a precise eigenvalue and we have the one-
dimensional radial Schrödinger equation, which is an ordinary second-order
differential equation whose analytical exact solution is unknown. We describe
the qualitative properties of the energy spectrum, and we propose a semi-
analytical method to numerically calculate the eigenenergies (the representation
matrix of the Hamiltonian in the Landau basis is analytically calculated and
is exactly known). Also, we use a number of useful analytical approximation
methods, such as semiclassical approximations, the perturbation method, the
variational method and the Taylor power expansion of the potential around the
minimum to estimate the ground-state energy and the higher levels.

PACS numbers: 03.65.−w, 03.65.Ge, 03.65.Sq, 32.60.+i

1. Introduction

The problem of the hydrogen atom (or hydrogen-like atoms, or highly excited atoms—Rydberg
atoms—also called planetary atoms; in what follows we shall simply speak of the hydrogen
atom) in a strong magnetic field is an important and fascinating problem (Robnik 1981, 1982,
Hasegawa et al 1989, Friedrich and Wintgen 1989, Ruder et al 1994, Blümel and Reinhardt
1997). One motivation comes from experimental physics, namely atomic spectroscopy, where
we would like to understand the spectra of the highly excited hydrogen atom in the strong(est)
magnetic fields available in the laboratory (up to about 10 Tesla = 105 G). The earliest
measurements have been performed by the group of Professor Welge (Holle et al 1988) and
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the group of Professor Kleppner (Iu et al 1991), although the oldest outline and suggestion
for such experiments goes back to Mueller and Hughes (1974). Another phenomenon known
since long ago is the quasi-Landau resonance (Garton and Tomkins 1969).

The other motivation, perhaps even older than laboratory experiments, comes from
astrophysics, where hydrogen spectra in strong magnetic fields have been known since at
least about 1970, e.g. in the strongly magnetic white dwarf stars (the polar magnetic field
strength can be as large as up to about 5 × 108 G) whose hydrogen covered surfaces are
still radiating while slowly cooling down, sometimes with additional accreted hydrogen from
the interstellar space. The so-called Minkowski absorption bands, known since the 1970s,
have finally been explained in terms of the so-called stationary line spectroscopy (Wunner
et al 1985). Theoretically it has been shown (Ruder et al 1994 and references therein) that
the energy spectrum and thus the wavelengths of the spectral lines are extremely sensitive
to the strength B of the magnetic field, so they vary wildly with B. Since B in the emission
region is highly nonuniform (B of a star typically is a dipole field, so it decreases inversely
cubically with the distance), the line spectrum is expected to be quite blurred, easily confused
with a continuous spectrum. However, the stationary spectral lines, i.e. those lines at certain
B = Bs where the second derivative w.r.t. B at Bs vanishes (having maximum, minimum or
inflection there), step out and are easily clearly recognized. In this way, it has been possible to
explain the Minkowski bands in terms of the stationary lines dominated by the emission in that
B where the stationary condition is satisfied, and thus the estimate of the magnetic field strength
in that emission region could be deduced. In a certain particular case (Wunner et al 1985) this
result agrees with the determination of B through the measurement of the circular polarization
of the optical continuum by Kemp et al (1970), and this has been quite a successful theory of
atomic spectra in strong magnetic fields. Neutron stars can have polar magnetic field strengths
up to 1013 G. There is no hydrogen, but we can have, for example, the almost completely
ionized (and possibly highly excited) iron FeXXVI, in a variety of accretion scenarios, in
binary systems rather than in isolated neutron stars (pulsars).

On the theoretical side, the problem of the hydrogen atom in strong (actually arbitrary)
B is fascinating, because it is a paradigm of classical and quantal Hamiltonian nonintegrable
and chaotic system (Robnik 1981, 1982, Bohigas et al 1986, Hasegawa et al 1989,
Friedrich and Wintgen 1989, Stöckmann 1999), in the three-dimensional (3D) case. It is
the example of quantum chaos par excellence. Indeed, the simple classical system described
by the Lagrange function

L = 1

2
mev2 +

e

c
A · v − Qe

r
(1)

where A is the vector potential, and v is the velocity vector of the point charge e, moving
in the magnetic field B and in the Coulomb electrostatic field of the central point charge Q,
is generally a nonintegrable Hamiltonian dynamical system of the mixed type. This exhibits
chaotic motion for certain initial conditions in the classical phase space and regular motion on
invariant tori for other initial conditions, depending on the energy, strength of the magnetic field
and on the particular initial conditions (Robnik 1981). Generally, it is predominantly regular
at low energies, and chaotic at high energies. The chaos–regularity border is qualitatively
defined by comparing and equating the strength of the Coulomb force with the magnetic force
acting on the moving point charge e with mass me. Here c is the velocity of light and also
r = |r|. For clarity, in the case of an electron attracted by a Z-fold positively charged nucleus
we have e = −e0, and Q = Ze0, where e0 is the elementary charge and Z is the number of
protons.
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The Hamiltonian H as a function of coordinates r and the generalized canonical momenta
p, derived from (1) by the standard procedure, reads

H(r, p) = 1

2me

(
p − e

c
A

)2
+

Qe

r
(2)

describing the motion of the point charge e in the Coulomb electrostatic field and in a magnetic
field

B = curl A. (3)

In particular, even if the magnetic field is just a uniform static field (time-independent) B, for
which the vector potential A can be written as

A = 1
2 B × r (4)

we obtain H in the form

H(r, p) = 1

2me

p2 − e

2mec
B · L +

e2

8mec2
(B × r)2 +

Qe

r
(5)

where L is the canonical angular momentum L = r×p. The Hamiltonian equations of motion
are

ṗ = −∂H

∂r
= e

2mec
p × B +

e2

4mec2
B × (B × r) +

Qer
r3

(6)
ṙ = ∂H

∂p
= p

me

− e

2mec
B × r = 1

me

(
p − e

c
A

)
.

The total energy (2) is therefore the sum of the kinetic and of the Coulomb electrostatic
potential energy, namely

H = 1

2
meṙ2 +

Qe

r
. (7)

By substitution in equations (6) we can easily arrive at Newton’s equations of motion

mer̈ = me

d2r
dt2

= e

mec
(meṙ) × B +

Qer
r3

(8)

thereby eliminating the canonical momenta and writing them in terms of the kinetic momentum
P = meṙ. Clearly, if there is no Coulomb field (i.e. if Q = 0 in the last term in
equation (7)) then the vector P = meṙ has a constant length P = |P| = const, and simply
precesses around the vector B with the angular cyclotron frequency ω = |eB|/(mec) (twice
the Larmor frequency), in the mathematically positive sense around the z-axis if eB < 0 and
negative if eB > 0. Thus we have an integrable system. However, the Coulomb interaction
destroys the separability and the integrability of the system as was shown first in Robnik
(1981), in the 3D case.

It is easy to show that L is not conserved, whilst Lz = B · L/B is a conserved quantity,
the z-component of the angular momentum, chosen as parallel to the vector B. Namely, it
follows from equation (6) that

L̇ = dL
dt

= − e

2mec
B × L +

e2

4mec2
(B · r)(r × B) (9)

and consequently

BL̇z = B
dLz

dt
= B · L̇ = 0 (10)

so that indeed Lz is a constant of motion, whilst L is not! Of course, conservation (invariance)
of Lz along with the total energy H is not enough to preserve the integrability of the system.
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One (scalar) integral of motion is missing for that, and in fact there is no such integral,
implying the nonintegrability and chaoticity of the 3D system, as has been shown originally
in Robnik (1981). For sufficiently small B, the second term, quadratic in B, in equation (9)
can be neglected and then we have approximately just a precession of L around the vector B
at the Larmor frequency (ωL = ω/2) and therefore approximate integrability (KAM regime,
with invariant tori almost everywhere).

Even if the 3D problem is chaotic and therefore analytically not solvable, the two-
dimensional (2D) case, which is an integrable and even separable system, is still very
interesting, from the point of view of mathematical physics, although still not analytically
exactly solvable, and it sheds some light on the aspects of the 3D problem. In this paper we
deal with the 2D problem only.

Let us now specialize to the 2D case z = 0 by rewriting the Lagrange function (1) in polar
coordinates (ρ, φ)

L = me

2
(ρ̇2 + ρ2ϕ̇2) +

eB

2c
ρ2ϕ̇ − Qe

ρ
. (11)

After introducing the standard notations for canonical momenta

pρ = ∂L
∂ρ̇

= meρ̇ pϕ = ∂L
∂ϕ̇

= meρ
2ϕ̇ +

eB

2c
ρ2 (12)

and performing the standard procedure to construct the Hamiltonian function H of the
system (11)

H = pρρ̇ + pϕϕ̇ − L (13)

we obtain

H = p2
ρ

2me

+
p2

ϕ

2meρ2
− eBpϕ

2mec
+

e2B2ρ2

8mec2
+

Qe

ρ
. (14)

Here ϕ is a cyclic variable, so again we see immediately that pϕ is a constant of motion,
because

ṗϕ = −∂H
∂ϕ

= 0 (15)

and therefore

ϕ̇ = ∂H
∂pϕ

= pϕ

meρ2
− eB

2mec
(16)

and consequently

ϕ(t) =
∫ t

t0

(
pϕ

meρ2
− eB

2mec

)
dt + ϕ(t0) (17)

can be immediately integrated once ρ(t) as a function of time t is known. The latter is of
course obtained as a solution of the ordinary second-order differential equation for ρ, which
follows from the Hamilton equations generated by H in equation (14), namely

meρ̈ = −∂H
∂ρ

= p2
ϕ

meρ3
− e2B2

4mec2
ρ +

Qe

ρ2
. (18)

If we choose a coordinate system rotating at Larmor rotation frequency ωL = ω/2 (one
half cyclotron frequency!), we can eliminate in equation (11) and thus in equation (14) the
paramagnetic term (linear in B), which is also clear in equation (17), getting the most simple
(2D) form of the Hamiltonian as was proposed and studied in Robnik (1981), namely

H = p2
ρ

2me

+
p2

ϕ

2meρ2
+

e2B2ρ2

8mec2
+

Qe

ρ
. (19)
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The canonical angular momentum L is different from the kinetic angular momentum l, namely
we have the definition

l = r × mev (20)

and thus (from the second equation of (6))

l = L − e

2c
r × (B × r). (21)

The z-component (parallel to B) is equal to

lz = Lz − eB

2c
ρ2. (22)

When going over to the quantum mechanics of our problem, we apply the canonical
quantization rule in the ordinary coordinate space, thus replacing momentum p by the operator

p̂ = −ih̄
∂

∂r
. (23)

As can be verified quantum mechanically, for the angular momenta, we have precisely
equation (21)

Î = L̂ − e

2c
r × (B × r) (24)

and for the z-component

l̂z = L̂z − eB

2c
ρ2. (25)

Therefore, for the expectation values we have

〈l̂z〉 = Lz − eB

2c
〈ρ2〉 (26)

where L̂z in polar coordinates with the polar angle ϕ is equal to

L̂z = −ih̄
∂

∂ϕ
= p̂ϕ (27)

and is a conserved quantity, with the eigenvalue Lz, which commutes with the Hamilton
operator

Ĥ = p̂2

2me

− eB

2mec
L̂z +

e2B2

8mec2
ρ2 +

Qe

ρ
. (28)

Using equation (23) and the polar coordinates (ρ, ϕ) we obtain the Schrödinger equation

Ĥψ = Eψ (29)

which is fully written as

− h̄2

2me

{
1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

1

ρ2

∂2ψ

∂ϕ2

}
+ ih̄

eB

2mec

∂ψ

∂ϕ
+

e2B2

8mec2
ρ2ψ +

Qe

ρ
ψ = Eψ. (30)

A shorter version of this paper has been published in Robnik and Romanovski (2002).
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2. Preliminaries of the quantum mechanical problem

Let us briefly examine the quantum mechanical problem by considering first the free point
charge (of mass me and charge e) in a homogeneous constant magnetic field B, which is a
well-known problem (Landau and Lifshitz 1997).

We start from equation (2) by ignoring the Coulomb term and choosing an appropriate
gauge for A.

Since p̂ = −ih̄∂/∂r we see

p̂A − Ap̂ = −ih̄ div A (31)

and thus if we choose the Coulomb gauge div A = 0, the commutator in equation (31) vanishes,
and then the Schrödinger energy operator becomes

Ĥ = p̂2

2me

− e

mec
A · p̂ +

e2

2mec2
A2. (32)

We shall work in polar coordinates (ρ, ϕ) (i.e. polar coordinates in the (x, y)-plane) by
choosing the vector potential

AP = (Aρ,Aϕ) = (
0, 1

2Bρ
)

(33)

whose Cartesian coordinates are

AP = (Ax,Ay) = (− 1
2By, 1

2Bx
)
. (34)

We make the separation

ψ = ψ(x, y) = 1√
2π

eimϕRm(ρ) (35)

and inserting it into equation Ĥψ = Eψ , namely equation (30), we find

− h̄2

2me

[
R′′ +

1

ρ
R′ − m2

ρ2
R

]
− mh̄ω

2
sign(eB)R +

meω
2

8
ρ2R = Em,nρ

R (36)

where m is the canonical angular momentum quantum number, m = 0,±1,±2,±3, . . .,
so that (see equation (27)) the eigenvalue of L̂z is Lz = mh̄, whilst nρ will be the radial
quantum number counting the number of nodes of the radial wavefunction Rm,nρ

(ρ), so
nρ = 0, 1, 2, 3, . . . . The total energy now is

E = Em,nρ
. (37)

The radial Schrödinger equation for Rm,nρ
in the form (36) can be solved elementary with the

result (Landau and Lifshitz 1997)

Rm,nρ
(ρ) = C|m|,nρ

e−ξ/2ξ |m|/2w|m|,nρ
(ξ) (38)

where

w|m|,nρ
(ξ) = F

(−nρ,
1
2 (|m| + 1), ξ

)
(39)

is the confluent hypergeometric series (F = 1F1) and

ξ = |eB|
2ch̄

ρ2 (40)

is the dimensionless variable proportional to ρ2. Rm,nρ
depends only on |m|, the sign of m

does not affect its value. Therefore we have now

Em,nρ
= h̄ω

(
nρ +

|m| − sign(eB)m

2
+

1

2

)
(41)
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and by introducing the notation

n = nρ +
|m| − sign(eB)m

2
(42)

for the main quantum number n we write the energy spectrum as

Em,nρ
= h̄ω

(
n + 1

2

)
(43)

which is infinitely degenerate, but discretely, because for a given n � 0 there are infinitely
many possibilities for nρ and m satisfying equation (42), namely

nρ = n +
sign(eB)m − |m|

2
(44)

where, in the case that sign(eB) is positive, m can have any non-negative integer value, or any
negative integer value m whose |m| � n. This equation (43) is the Landau energy spectrum of
a free point charge e in a constant homogeneous magnetic field B (Landau and Lifshitz 1997,
p 455).

The general solution at the energy (41) of the Schrödinger equation in the (x, y)-plane
can now be written

ψn(x, y) = ψn(ρ, ϕ) = 1√
2π

∑
m,nρ

bm,nρ
eimϕRm,nρ

(ρ) (45)

where bm,nρ
are the expansion coefficients and summation runs over all m and nρ compatible

with the fixed value of n as given in equation (42). The infinite discrete degeneracy of the
energy spectrum is due to the continuous translational invariance of the underlying Hamilton
system in the plane perpendicular to the magnetic field vector.

Next we would like to investigate the physical meaning of the quantum number m which,
when multiplied by h̄, is the eigenvalue of the canonical angular momentum Lz. First we
calculate the expectation value of ρ2. A straightforward calculation of the expectation value
of ρ2 yields (see also equation (89))

〈ρ2〉 = 2h̄c

|eB| (2nρ + |m| + 1). (46)

So the physical interpretation is as follows. nρ is the number of radial nodes of R(ρ) and
measures the degree of excitation, whilst m measures the distance of the electron from the
origin. If 〈ρ2〉 increases we might think semiclassically in terms of the cyclotron motion,
either the centre of the cyclotron motion is close to the origin and the average radius of the
cyclotron motion is very large, meaning high energies if sign(eB)m is negative, or the centre
of the cyclotron motion is very far away from the origin while the radius of the cyclotron
orbit is small, much smaller than the distance from the origin to the centre. In short, large
|m| means that the electron is far away from the origin, and if there is a Coulomb centre of
attraction at the origin, it would act like a small perturbation to the cyclotron Landau energy
levels. It would lift the infinite degeneracy of the Landau energy spectrum but obviously in
such a way that those eigenstates located far away from the Coulomb centre (perturber) would
be very close to the corresponding Landau level, implying that the spectrum has accumulation
points, in fact infinitely many, located at precisely the Landau levels (see equations (41) and
(43)) of the free electron in a magnetic field B. The energy spectrum is schematically shown
in figure 1.

The expectation value of the kinetic angular momentum is according to equation (26),
using equation (46), equal to

〈lz〉 = Lz − eB

2c
〈ρ2〉 = mh̄ − sign(eB)(|m| + 1 + 2nρ)h̄ (47)
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Figure 1. The first five (n = 0, 1, 2, 3, 4) energy levels ε̃ for m = 0,−1,−2, −3,−10,−50, for
the range of λ ∈ [2.5, 2.9]; they accumulate to the ‘fat’ line (2n + 1)λ.

and thus

〈lz〉 = −h̄ sign(eB)(−sign(eB)m + |m| + 1 + 2nρ)

= −2h̄ sign(eB)
(
n + 1

2

) = −2 sign(eB)En/ω (48)

so that 〈lz〉 is always positive if eB < 0 (e.g. electron in positively oriented B > 0), and
negative if eB > 0. This is exactly what we expect intuitively based on the classical and
semiclassical picture. Also, the minimum absolute value of the average kinetic angular
momentum is precisely h̄ (when the main Landau quantum number is equal to zero, n = 0,
i.e. for the lowest Landau state). From equation (48) we see that the energy eigenvalue
uniquely determines the absolute value of the average kinetic angular momentum, and the sign
is determined by the sign of eB.

The 3D hydrogen atom in the magnetic field is a nonintegrable and chaotic system (Robnik
1981), whilst the 2D one is separable (in polar coordinates) and therefore integrable. We now
go back to the Hamilton operator (28) and set up the corresponding Schrödinger equation
for the 2D problem, for the separated wavefunction ψ(ρ) exp(imϕ) in polar coordinates
(ρ, ϕ), where we use the fact that L̂zψ = −ih̄ ∂

∂ϕ
ψ = mh̄ψ . Thus, we obtain for the radial

wavefunction ψ

1

ρ

∂

∂ρ

(
ρ

∂ψ

∂ρ

)
+

[
2meE

h̄2 − 2meQe

h̄2ρ
−

(
m

ρ
− eB

2h̄c
ρ

)2
]

ψ = 0. (49)

Let us now introduce natural units in such a way that we shall obtain the Schrödinger
equation in a nice dimensionless form. We shall now specify the point charges as e = −e0

and Q = Ze0. The length is measured in units of Bohr radius aB

ρ = aBx aB = h̄2

mee
2
0

. (50)
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Another quantity with the dimension of length is the Landau radius b

b =
√

h̄c

e0|B| (51)

and the unit of energy will be one Rydberg, equal to e2
0/(2aB), so that the dimensionless

energy is

ε̃ = 2aBE

e2
0

(52)

and finally the unit of magnetic field strength will be such that

λ =
(aB

b

)2
= B/B0 B0 = m2

ee
3
0c

h̄3 (53)

and for e0 and me being the elementary charge and the electron’s mass we obtain

B0 = m2
ee

3
0c

h̄3 = 2.3506 × 109 Gauss = 2.3506 × 105 Tesla (54)

so indeed a very strong magnetic field not available in a laboratory, but in the astrophysical
context mentioned in the introduction. So λ is a linear measure of the strength of the magnetic
field, such that λ = 1 means B = B0. With these conventions we find the dimensionless
fundamental equation

ψ ′′ +
1

x
ψ ′ +

[
ε̃ + mλ sign(eB) +

2Z

x
− m2

x2
− λ2

4
x2

]
ψ = 0 (55)

and after introducing the reduced energy ε

ε = ε̃ + mλ sign(eB) (56)

we have

ψ ′′ +
1

x
ψ ′ +

[
ε +

2Z

x
− m2

x2
− λ2

4
x2

]
ψ = 0. (57)

This is the fundamental radial ordinary second-order differential equation for the radial
wavefunction ψ as a function of the dimensionless polar radius x, that we are going to
study.

3. The representation of the Hamilton operator in the Landau basis

From now on the quantum number m (canonical angular momentum number) will be
considered fixed unless stated otherwise explicitly. We are going to find a solution of our
problem (57) by finding the eigenvalues of the Hamilton operator

Ĥ (ψ) ≡ −ψ ′′(x) − ψ ′(x)

x
+

(
m2

x2
− 2Z

x
+

x2λ2

4

)
ψ(x)

= H̃ (ψ) − 2Z

x
ψ(x) (58)

where

H̃ (ψ) ≡ −ψ ′′(x) − ψ ′(x)

x
+

(
m2

x2
+

x2λ2

4

)
ψ(x). (59)

Then

Hks = 2π

∫ ∞

0
xψk(x)Ĥ (ψs) dx = εsδks − 4πZ

∫ ∞

0
ψk(x)ψs(x) dx. (60)
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Here εs are the eigenvalues of the operator H̃ , and in fact they are exactly the Landau levels
(41), now in dimensionless form, where s = nρ = 0, 1, 2, . . .,

εs = λ(2s + 1 + |m|) (61)

such that the full energy ε̃ is equal to

ε̃s = εs − mλ sign(eB) = λ(2s + 1 + |m| + m) (62)

because we chose sign(eB) = −1, as e = −e0 and B > 0. Here ψs(x) is the sth (Landau)
eigenfunction of H̃ , where s is exactly the number of its nodes. Therefore, to complete our task
we have to diagonalize the operator Ĥ , i.e. its matrix Hks . There are three steps: first, to show
that the Landau basis of the eigenfunctions of the operator H̃ is complete (in Hilbert space
of all ψ radial functions) (which is demonstrated below); secondly, to calculate the matrix
elements Hks (which is done exactly and analytically below); and thirdly, to diagonalize the
Hks matrix (which cannot be done exactly analytically, but only numerically). It is important
to stress that the functional dependence of Hks on λ, and of course on Z, will be exactly
known, namely the integral in the second term of equation (60) is exactly proportional to

√
λ,

as will be shown below. This is very important, because it means that the matrix Hks has to be
calculated (analytically and exactly) only once (see equations (82) and (86)) and consequently
the energy spectrum can be obtained at any λ and Z by a diagonalization of equation (60).
This is one of the major merits of this paper.

We proceed by constructing the orthonormal Landau eigenbasis ψs(x), i.e. the normalized
solutions of

H̃ (ψs) ≡ −ψ ′′
s (x) − ψ ′

s(x)

x
+

(
m2

x2
+

x2λ2

4

)
ψs(x) = εsψs. (63)

The substitution

y = λ

2
x2 (64)

in equation (63) yields(
−m2

4y
− y

4
+

ε

2λ

)
ψ(y) + ψ ′(y) + yψ ′′(y) = 0. (65)

This equation has a solution

e− y

2 y
|m|
2 1F1

(−ε + λ + |m|λ
2λ

, 1 + |m|, y
)

(66)

with F(a, b, z)
def= 1F1

[
a

b
; z

]
being the confluent hypergeometric function which becomes a

polynomial if
−ε + λ + |m|λ

2λ
= −s (67)

where s = nρ is a non-negative integer equal to the number of nodes nρ of the radial
eigenfunction.

Therefore, the spectrum of the equation (63) is precisely (61), where s = 0, 1, 2, . . . and
the corresponding wavefunctions are

ψs(x) = as e− λ
4 x2

x|m|
1F1

(
−s, 1 + |m|, λ

2
x2

)
. (68)

Using the interrelation between the confluent hypergeometric function and the generalized
Laguerre polynomials L

|m|
n (z),

L|m|
n (z) = (n + |m|)!

n!|m|! F(−n, |m| + 1, z) (69)
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we can write the formula (68) in the form

ψs(x) = as

|m|!s!

(|m| + s)!
e− λ

4 x2
x|m|L|m|

s

(
λ

2
x2

)
. (70)

Now from the normalizing condition

2π

∫ ∞

0
xψ2

s (x) dx = 1 (71)

and the orthogonality relation for Laguerre polynomials∫ +∞

0
e−uu|m|L|m|

n (u)L
|m|
k (u) du =

{
0 if n �= k

�(|m| + 1)
(
n+|m|

n

)
if n = k

(72)

we have that

as =
√

λ|m|+1(|m| + s)!2

2|m|+1π
(|m|+s

s

)|m|!2s!2�(1 + |m|) . (73)

Therefore

ψs(x) = bs e− λ
4 x2

x|m|L|m|
s

(
λ

2
x2

)
(74)

where

bs =
√

λ|m|+1

2|m|+1π
(|m|+s

s

)|m|! . (75)

Now let us show that the orthonormal system ψs(x), s = 0, 1, . . . is a complete basis of
the Hilbert space L2(0, +∞). To this end it is sufficient to prove that the set{

e− λ
4 x2

xαx2n
}∞

n=0 (76)

is dense in L2(0, +∞). Here α is a real number α > −1/2. Indeed, an arbitrary function h(x)

from L2(0, +∞) we can write in the form

h(x) = e− λ
4 x2

xαf (
√

λx). (77)

We need to show that for any ε > 0 there exists a polynomial t (x2) such that

I (h) ≡
∫ +∞

0

(
e− λ

4 x2
xα[f (

√
λx) − t (x2)]

)2
dx < ε. (78)

After the substitution y = λx2 we obtain

I (h) = const
∫ +∞

0
(e−y/2yα/2−1/4[f (

√
y) − t (y/λ)])2 dy

= const
∫ +∞

0
(e−yyβ[f (

√
y) − t̃ (y)])2 dy < ε, (79)

where β = (2α − 1)/2 and t̃ (y) = t (y/λ). Note that h(x) ∈ L2(0, +∞) yields that
e−y/2yα/2−1/4f (

√
y) ∈ L2(0, +∞). Therefore, according to (Szegö 1959, ch. 5.7), there

is a polynomial t̃ (y) satisfying equation (79). This completes the proof of the completeness
of the Landau basis at any λ.

Now we calculate the matrix elements (60). We can check that

L
|m|
k

(
λ

2
x2

)
L|m|

s

(
λ

2
x2

)
=

k+s∑
u=0


 u∑

j=0

(−1)u
(
k+|m|
k−j

)(
s+|m|
s−u+j

)
j ! (u − j)!


 (

λ

2

)u

x2u. (80)
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Note that∫ +∞

0
x2|m|+2u+v e− λ

2 x2
dx = 2− 1

2 +|m|+u+ v
2 λ− 1

2 −|m|−u− v
2 �

(
1

2
+ |m| + u +

v

2

)
. (81)

Then, using equations (80) and (81) with v = 0 we obtain

Aks =
∫ ∞

0
ψk(x)ψs(x) dx = bkbs

k+s∑
u=0


 u∑

j=0

(−1)u
(
k+|m|
k−j

)(
s+|m|
s−u+j

)
j ! (u − j)!




×
(

λ

2

)u

2− 1
2 +|m|+uλ− 1

2 −|m|−u�

(
1

2
+ |m| + u

)

= λ1/2√k!s!(k + |m|)!(s + |m|)!
2|m|+1

√
2π

k+s∑
u=0

(−1)u(2|m| + 2u − 1)!!

2u

×
u∑

j=0

1

(|m| + j)!(k − j)!(|m| + u − j)!(s − u + j)!j !(u − j)!
(82)

To simplify the obtained expression we rewrite the sum in the form

s+k∑
u=0

(−1)u(2|m| + 2u − 1)!!

2u

u∑
j=0

1

(|m| + j)!(k − j)!(|m| + u − j)!(s − u + j)!j !(u − j)!

= S1 + S2

where

S1 =
s∑

u=0

(−1)u(2|m| + 2u − 1)!!

2u

×
u∑

j=0

1

(|m| + j)!(k − j)!(|m| + u − j)!(s − u + j)!j !(u − j)!

and

S2 =
k+s∑

u=s+1

(−1)u(2|m| + 2u − 1)!!

2u

×
u∑

j=0

1

(|m| + j)!(k − j)!(|m| + u − j)!(s − u + j)!j !(u − j)!

=
k−1∑
h=0

(−1)h+s+1(2|m| + 2h + 2s + 1)!!

2h+s+1

×
s∑

v=0

1

(|m| + v + h + 1)!(k − v − h − 1)!(|m| + s − v)!v!(v + h + 1)!(s − v)!
,

where, to obtain this expression for S2, we can set u = h + s + 1, j = v + h + 1. Note that, in
fact, it is sufficient to consider only j between h + 1 and h + s + 1, because 1

(−h−1+j)! = 0 if
j < h + 1.

To sum the inner sum in S1 we write it as
∞∑

j=0

tj
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where

tj = 1

(|m| + j)!(k − j)!(|m| + u − j)!(s − u + j)!j !(u − j)!

and here we are in the position to replace the finite sum by the infinite sum because again
1

(u−j)! = 0 if j > u.
Computing we obtain

tj+1

tj
= − (j − k)(j − |m| − u)(j − u)

(j + |m| + 1)(j + s − u + 1)(j + 1)

Hence, using the algorithm from Petkovšek et al (1996, p 36) (which, actually, follows from
the definition of hypergeometric functions), we conclude that

u∑
j=0

tj =
∞∑

j=0

tj = 1

|m|!k!(|m| + u)!(s − u)!u!
3F2

[ −k −|m| − u −u

|m| + 1 s − u + 1
;−1

]

and, therefore,

S1 =
s∑

u=0

(−1)u(2|m| + 2u − 1)!!

2u|m|!k!(|m| + u)!(s − u)!u!
3F2

[ −k −|m| − u −u

|m| + 1 s − u + 1
;−1

]
(83)

Similarly,

S2 =
k−1∑
h=0

(−1)h+s+1(2|m| + 2h + 2s + 1)!!

2h+s+1(|m| + h + 1)!(k − h − 1)!(|m| + s)!(h + 1)!s!

× 3F2

[
h + 1 − k −|m| − s −s

h + 2|m| + h + 2
;−1

]
. (84)

Therefore, finally we obtain

Hks = εsδks − 4πZAks, (85)

where

Aks = λ1/2
√

k!s!(k + |m|)!(s + |m|)!
2|m|+1

√
2π

(S1 + S2) (86)

with S1 and S2 defined by equations (83) and (84), respectively.
Note that we had to split the sum in equation (82) into two parts, S1 and S2, because

otherwise using the algorithm of Petkovšek et al (1996) we would encounter during the
calculations the indeterminicity 0 · ∞.

This completes our calculation of the matrix Hks representing Ĥ from equation (58) in the
λ-Landau basis, as given in equations (85)–(86). Note that the matrix is analytically exactly
known and computable, and the dependence on λ and Z explicitly known, so that the matrix
must be in fact calculated only once (this is quite an intensive procedure regarding CPU time),
and then the diagonalization of Hks can be performed for any λ and Z.

To compute the diagonal elements Akk it is more convenient to use the formula (A.3) (see
the appendix) rather than equation (86). Making use of this formula we obtain

Akk = λ1/2�(1/2 + |m|)
2
√

2π |m|! 3F2

[ 1
2

1
2 −k

1 1 + |m| ; 1

]
(87)

where k = 0, 1, 2, . . . . When k = 0 (ground state for given fixed m) the value of the
hypergeometric function is equal to one, and then the eigenvalues (within the first-order
perturbation theory) given in equation (93) agree exactly with the variational result (141)
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of section 6. Moreover, in the asymptotic limit of large |m|, using the Wallis’ formula
(Abramowitz and Stegun 1964, p 258), we obtain

Akk ∼ λ1/2

2π
√

2|m| when |m| → +∞. (88)

To see this, note that in equation (87) we have

3F2

[ 1
2

1
2 −k

1 1 + |m| ; 1

]
= 1 +

k∑
s=1

αs

gs(|m|)
where αs �= 0 is a constant and gs(|m|) = (1 + |m|)s is a polynomial in |m| of the degree s, as
we are here using the definition (a)s = a(a +1)(a +2) · · · (a +s −1). Therefore the expression

3F2

[ 1
2

1
2 −k

1 1 + |m| ; 1

]

goes to 1 for all fixed k when |m| → ∞.
It is easily checked that

〈x2〉 = 2π

∫ +∞

0
|ψn(x)|2x3 dx = 2(1 + |m| + 2n)

λ
. (89)

Indeed,

〈x2〉 = 2πb2
n

∫ ∞

0
x3 e− λ

2 x2
x2|m|

(
L|m|

n

(
λ

2
x2

))2

dx. (90)

Using the substitution λ
2 x2 = y, the orthogonality relation (72) and the recurrence relation of

Laguerre polynomials (Abramowitz and Stegun 1964, p 783)

Lα−1
n (x) = Lα

n(x) − Lα
n−1(x) (91)

we obtain

〈x2〉 = πb2
n2|m|+2λ−|m|−2(|m| + 1)!

((
n + |m| + 1

n

)
+

(
n + |m|
n − 1

))
. (92)

This yields equation (89); see also expression (46).
The diagonal elements Akk given in equation (87) are important, because they are the first-

order perturbation theory estimate of the perturbation problem (58)–(60), where the Coulomb
potential energy −2Z/x is treated as a small perturbation of the Landau eigenstates, and this
will be a good approximation if λ is sufficiently small, and/or |m| sufficiently large, namely
we have

Es = εs − 4πZAss (93)

which in the asymptotic limit |m| � 1 becomes quite a simple expression, due to
equation (88),

Es = εs − Z

√
2λ

|m| . (94)

Here by Es we denote the sth reduced dimensionless eigenvalue, so that the total dimensionless
energy Ẽs is given (approximated) by

Ẽs = λ(2s + |m| + m + 1) − Z

√
2λ

|m| (95)
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because we have chosen sign(eB) = −1, as e = −e0, and B > 0, and of course
s = 0, 1, 2, . . . . This is a very nice and transparent result, as it shows that upon switching on
the Coulomb interaction, from Z = 0 to Z > 0, we observe instead of infinitely discretely
degenerate Landau levels, in fact clusters of levels, each of which has an accumulation point
at precisely the Landau level. When m is negative, m = −|m|, but has large |m|, these levels
approach the accumulation point as predicted in equation (95). Clearly, large |m| for negative
m < 0 leaves the Landau energy unchanged. So, the physical meaning is, because of equation
(89), that we are having a charge e at a large distance from the Coulomb central charge Q in
a magnetic field B, such that the (average) kinetic angular momentum lz is also small, whilst
the canonical angular momentum Lz is large. In this sense we do understand the structure
of clusters of Coulomb perturbed Landau levels at large distances or large magnetic fields.
In figure 1 we illustrate the structure of such Landau clusters of levels by exact numerical
diagonalization of the matrix (85) for a certain range of λ ∈ [2.5, 2.9].

Now we turn to a very important physical observation, which is the following. The energy
spectrum of equation (58) is purely discrete for any λ �= 0, which is clear from the shape of
the potential well, which increases indefinitely for λ �= 0 as x → ∞, however small λ is. At
λ = 0, i.e. in the pure Coulomb case without a magnetic field, the spectrum is discrete for
all negative energies ε < 0, has the ionization limit at ε = 0, and the continuum at ε > 0.
What about the ionization limit in a nonvanishing magnetic field λ �= 0, which now is not the
continuum limit?

Intuitively, we would instinctively answer at the first, lowest, accumulation point. This is
of course not strictly true because, at λ �= 0, the spectrum is everywhere discrete. Nevertheless,
an escape to infinity is possible. Namely, within any Landau cluster with the main quantum
number fixed, according to equation (62), at negative m, but with large |m|, the system
remains within the same cluster energetically, but with increasing |m| the average radius 〈x2〉
is increasing linearly as given in equation (89). This is in fact nothing but almost radiationless
escape to infinity, and this is what we mean by ionization. The photon energy needed for such
escape is the smaller the larger |m| is. It is in this sense that we can call the lowest Landau
energy—according to equation (62) it is equal to λ—the ionization limit εion. The picture
somehow repeats itself then in any higher lying Landau cluster. There, ionization is possible
also by emission of radiation, whilst the ionization from below εion is possible by absorption
of radiation, but in each case the quantum number m must change. The ionization limit thus
is equal to

εion = λ. (96)

In real physical units this means, using equation (52), that the ionization limit is equal to

Eion = e2
0

2aB

× B

B0
= (B/B0) × Rydberg = (B/B0) × 13.598 eV (97)

where according to equation (53) B0 = m2
ee

3
0c

h̄3 = 2.3506×109 Gauss = 2.3506×105 Tesla. As
the third dimension does not change anything in this regard, the statement about the ionization
limit (97) in a 3D hydrogen atom in magnetic field still holds true.

4. The representation of the Hamilton operator in the Coulomb basis

In this section we investigate the representation of our Hamilton operator (58) in the Coulomb
basis, i.e. in the basis of the orthonormal discrete eigenfunctions of the 2D Coulomb problem
with the general Z, sometimes also called hydrogenic basis. As is well known, this basis is
not a complete basis in the Hilbert space, but it nevertheless plays an important role in the
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perturbational analysis, where the system (58) is treated as a magnetic perturbation of the
Coulomb problem, as we shall see below. This is an important approach as λ in a laboratory
is always very small, λ � 10−4.

We now return to equation (58) and consider the case when λ = 0, namely,

−ψ ′′(x) − ψ ′(x)

x
+

( |m|2
x2

− 2Z

x

)
ψ(x) = εψ(x). (98)

The solution of interest is

e−√−εxx|m|
1F1

[
− 1√−ε

+
1 + 2|m|

2
, 1 + 2|m|, 2

√−εx

]
(99)

because if

− Z√−ε
+

1

2
+ |m| = −n, (100)

where n = 0, 1, 2, . . . , the hypergeometric series degenerates into a polynomial, and the
Schrödinger boundary conditions (71) are satisfied by the underlying solution. This implies
that the eigenvalues are

εn = − 4Z2

(1 + 2|m| + 2n)2
(101)

and the corresponding eigenfunctions are

ψn(x) = an e− 2Zx
1+2|m|+2n x|m|

1F1

[
−n, 1 + 2|m|, 4Zx

1 + 2|m| + 2n

]
. (102)

Using equation (69) we can write them in the form

ψn(x) = an e− 2Zx
1+2|m|+2n x|m| n!(2|m|)!

(n + 2|m|)!L
2|m|
n

(
4Zx

1 + 2|m| + 2n

)
. (103)

The normalization condition (71) yields

an = 2
3
2 +2|m|(1 + 2|m| + 2n)−

3
2 −|m|√(2|m| + n)!Z|m|+1

√
π (2|m|)!√n!

. (104)

Note that to compute the integral in equation (71) we used the recurrence relation for the
Laguerre polynomials (91). In this way, we finally obtain the eigenfunctions

ψn(x) = e− 2Zx
1+2|m|+2n x|m| 23/2+2|m|√n!Z|m|+1

√
π

√
(2|m| + n)!(1 + 2|m| + 2n)3/2+|m| L

2|m|
n

(
4Zx

1 + 2|m| + 2n

)
.

(105)

Now, denoting by H̃ the operator (58) with λ = 0 and by εn the eigenenergies (101) of this
operator we obtain

Hks = 2π

∫ ∞

0
xψk(x)Ĥ (ψs) dx = εsδks +

πλ2

2

∫ ∞

0
x3ψk(x)ψs(x) dx. (106)

Using the fact that

L
|2m|
k

(
4Zx

1 + 2|m| + 2k

)
L|2m|

s

(
4Zx

1 + 2|m| + 2s

)
=

k+s∑
u=0


 u∑

j=0

(−1)u
(

k + 2|m|
k − j

)(
s + 2|m|
s − u + j

)

× 1

j ! (u − j)!(1 + 2|m| + 2k)j (1 + 2|m| + 2s)u−j


 (4Zx)u (107)
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we obtain

Aks =
∫ +∞

0
x3ψk(x)ψs(x) dx = 23+4|m|(1 + 2k + 2|m|)− 3

2 −|m|(1 + 2|m| + 2s)−
3
2 −|m|√k!

√
s!

πZ2
√

(k + 2|m|)!√(2|m| + s)!

×
k+s∑
u=0


 u∑

j=0

(−1)u
(

k + 2|m|
k − j

)(
s + 2|m|
s − u + j

)

× 1

j ! (u − j)!(1 + 2|m| + 2k)j (1 + 2|m| + 2s)u−j




× 4u

(
(1 + 2k + 2|m|) (1 + 2|m| + 2s)

4 + 4k + 8|m| + 4s

)4+2|m|+u

(3 + 2|m| + u)! (108)

From equation (A.3) for the diagonal elements we have

Akk =
( ak

Zm+1

)2 4−4−2m(1 + 2k + 2m)4+2mk! (3 + 2m)!

Z2(1 + 2m)k
3F2

[
4 −3 −k

1 2|m| + 1
; 1

]
yielding

Akk = (1 + 2k + 2|m|)2(3 + 5k(1 + k) + 5|m| + 10k|m| + 2|m|2)
16πZ2

. (109)

Again, the diagonal elements Akk are important due to their role as the first-order perturbation
theoretical correction of the Coulomb eigenenergies, i.e. they are the first-order analytical
treatment of the quadratic Zeeman effect. The full (not reduced) eigenenergies in this
approximation are, in dimensionless form, equal to

ε̃n = − 4Z2

(1 + 2|m| + 2n)2
+ mλ +

πλ2

2
Ann (110)

with Ann given in equation (109), which is an exact expression for the quadratic Zeeman effect.
As we shall see below, for the ground state n = 0 of arbitrary m

ε̃0 = − 4Z2

(1 + 2|m|)2
+ mλ +

λ2

32Z2
(1 + 2|m|)2(3 + 5|m| + 2|m|2) (111)

it exactly agrees with the variational estimates, where the latter certainly give the upper limit
to the ground state.

5. The representation of the Hamilton operator in the special Landau basis λ = 1

The hydrogenic basis is (well known to be) incomplete in the Hilbert space L2(0, +∞), whilst
the λ-Landau basis, which is the orthonormal set of the eigenfunctions of the system Ĥ (λ),
is complete for any λ, as demonstrated in section 3. Therefore, the hydrogenic basis can be
useful at best in perturbation-like analysis of the previous section. Thus, in exact analysis the
Landau basis for some λ must be used. In principle, we could use any λ-Landau basis for any
Ĥ (λ̃) system, where λ̃ is just any other value of the parameter λ, and the representation of Ĥ

in the form of the matrix Hks will be complete and the diagonalization of a finite dimensional
approximation of this infinite matrix would formally converge to the exact value by increasing
the dimensionality of the finite matrix approximant.

The question is, what λ should we choose? It seems most natural to use λ-basis for the
λ-system Ĥ (λ). For large λ � 1 the λ-Landau basis is certainly the best for all levels.
This is still true if we look at very high lying eigenstates at small λ. But at small λ, say
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λ � 1, the λ-basis is not good, for the obvious reason that the wavelength (of oscillation)
of the eigenfunctions is very large and therefore in order to describe the short-wavelength
oscillations of Coulomb-like eigenfunctions we need a very large number of basis functions
unlike the Coulomb-like basis analysis. The Coulomb-like eigenfunctions (i.e. slightly λ-
perturbed eigenstates of the hydrogen atom) have oscillation length of order unity at low
energies (but not at high energies above the zero field ionization threshold), and the same is
true for the λ-basis near to λ = 1. Therefore, in exact numerical calculations of the Ĥ (λ)

system for small λ � 1 and low lying states, the best method is to use the λ = 1 Landau basis.
Let us now calculate this basis and the representation Hks of Ĥ (λ) in the (λ = 1)-Landau
basis.

So we now take as a basis of the Hilbert space the system of the eigenfunctions of the
operator (58) without the term 2Z/x and with λ = 1, namely,

H̃ (ψ) ≡ −ψ ′′(x) − ψ ′(x)

x
+

(
m2

x2
+

x2

4

)
ψ(x). (112)

Then we can write the operator (58) as

Ĥ (ψ) = H̃ (ψ) +

(
λ2 − 1

4
x2 − 2Z

x

)
ψ. (113)

Therefore

Hks = 2π

∫ ∞

0
xψk(x)Ĥ (ψs) dx = εsδks − 4πZ

∫ ∞

0
ψk(x)ψs(x) dx

+ 2π

(
λ2 − 1

4

) ∫ ∞

0
x3ψk(x)ψs(x) dx (114)

where

εn = (2n + 1 + |m|) (115)

and n = 0, 1, 2, . . .. Then using equation (86) we obtain

Dks = 4π

∫ ∞

0
ψk(x)ψs(x) dx =

√
πk!s!(k + |m|)!(s + |m|)!

2|m|−1
√

2
(S1 + S2) (116)

with S1 and S2 given by equations (83) and (84), respectively. Therefore

Hks = −ZDks + Gks (117)

where G = {Gks} is a three-diagonal matrix defined by

Gkk = εk + 1
2 (λ2 − 1)(2k + |m| + 1) (118)

Gk,k+1 = −2|m|π(λ2 − 1)bkbk+1
(k + |m| + 1)!

k!
(119)

and

Gk−1,k = −2|m|π(λ2 − 1)bk−1bk

(k + |m|)!
(k − 1)!

(120)

where

bk =
√

2−1−|m|

π
(|m|+k

k

)|m|! . (121)
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6. Estimations and approximations of the ground state

Knowing that the ionization limit is equal to ε̃ion = λ, as discussed and explained at the end
of the section 3, see equations (96)–(97), we would like to calculate the ionization energy.
For the latter, we have to know the ionization limit and the value of the ground-state energy.
Perhaps this is the most important parameter and aspect of the hydrogen atom in magnetic
field. Therefore, in this section we present a variety of methods to analytically estimate the
value of the ground-state energy of the 2D atom in magnetic field.

6.1. The variational method

We calculate the rigorous upper bound to the eigenenergy ε0 of the ground state, for any m,
which is expected to be very close to the actual value, as the choice of the variational trial
function is close to the exact one. Namely, we take the trial function

f (x) = c e−αxx|m| (122)

where α > 0 is the variational parameter, and

c = 2|m|√2α|m|+1
/√

π�(2 + 2|m|). (123)

Then

||f || =
√

〈f |f 〉 =
∫ +∞

0
2πf (x)2x dx = 1 (124)

and (see equation (58))

Ĥ (f ) = c e−αxx−1+|m|
(

−2Z + α + 2|m|α − xα2 +
x3λ2

4

)
. (125)

Taking into account that∫ +∞

0
xk−1 e−px dx = �(k)/pk (126)

we obtain for the variational functional

J (α, |m|) = 〈f |Ĥ |f 〉 = j1(α, |m|) + j2(α, |m|), (127)

where

j1(α, |m|) = α (α + 2α|m| − 4Z)

(1 + 2|m|) (128)

and

j2(α, |m|) = (1 + |m|)(3 + 2|m|)λ2

8α2
. (129)

The function j1 has a global minimum equal to −4Z2/(1 + 2|m|)2 at the point α =
2Z/(1 + 2|m|). Therefore if λ is small we obtain the bound for the ground-state energy

ε0 � min
α

J (α, |m|) � − 4Z2

(1 + 2|m|)2
+

(1 + |m|)(1 + 2|m|)2(3 + 2|m|)λ2

32Z2
. (130)

Please observe that this upper bound is in fact precisely identical to the perturbational result
(111), which is quite a curious result and demonstrates the power of variational methods when
the appropriate trial functions are used. For larger values of λ, the exact minimum of the
variational functional J (α, |m|) in equation (127) must be evaluated, but the result may no
longer be so excellent, as for large λ the asymptotic behaviour of the wavefunction is Gaussian
∝ exp(−λ2x2/4) rather than exponential.
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6.2. Lower bound by the minimum of the potential

To obtain a rigorous lower bound for the ground-state energy, we can find the minimum of the
potential

V (x) = m2 − 1/4

x2
− 2Z

x
+

λ2x2

4
. (131)

However, a better approximation can be found if we consider the quadratic approximation of the
potential in the point of minimum, and use the harmonic oscillator approximation of the ground
state. Namely, assume that V (x) reaches the minimum at the point x = x0, V (x0) = Vmin.
Then we use the approximation for the potential

V (x) ≈ Vmin +
V ′′(x0)

2
(x − x0)

2. (132)

This will yield a good approximation for the ground state provided the eigenfunction is
substantial in that inner area of x where the above quadratic (harmonic) approximation is
good. For the Schrödinger equation

u′′(x) + (k2 − µ2x2)u(x) = 0 (133)

the ground-state energy is equal to k2 = µ. Therefore, as an approximation for the ground-state
energy for the potential (131) we can take

ε0 = Vmin +

√
V ′′(x0)

2
. (134)

When Z > 0, |m| > 0 and λ ≈ 0 the potential has the minimum at x ≈ −1+4|m|2
4Z

− (1−4|m|2)4
λ2

1024Z5 ,

Vmin ≈ 4Z2

1 − 4m2
+

(1 − 4m2)
2
λ2

64Z2
. (135)

Also at this point the second derivative of the potential is

V ′′(x0) ≈ 7λ2

2
+

128Z4

(4m2 − 1)3
(136)

yielding the approximate quadratic harmonic approximation for the ground-state energy ε0

near its potential minimum, namely, from formula (134),

ε0 = Vmin +

√
V ′′(x0)

2

≈ 4Z2

1 − 4m2
+

(
1 − 4m2

)2
λ2

64Z2
+

√
64Z4(

4m2 − 1
)3 +

7λ2

4
(137)

where all terms of order λ3 or higher are omitted/neglected. For larger λ we have no explicit
analytical formulae, and the ground-state energy (134) has to be evaluated numerically.

6.3. Variational method at large λ � 1 using the Landau trial function

Now consider the case when λ � 1. With the normalized (see equation (124)) Gaussian trial
function, with α being the variational parameter,

f (x) = e−αx2
x|m|

√
π

√
2−1−|m|α−1−|m||m|!

(138)
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we obtain the variational functional

J (α, |m|) = 〈f |Ĥ |f 〉

=
2− 7

2

(
−32α

3
2 Z�( 1

2 + |m|) +
√

2(16α2 + λ2)(|m| + 1)!
)

α|m|! . (139)

We see that for any λ the equation J ′
α(α, |m|) = 0 has one real root, which for large λ is

α ≈ λ

4
(140)

yielding the upper bound for the reduced ground-state energy

E(α) ≈ (|m| + 1)λ − Z
√

2λ
�(1/2 + |m|)

|m|! (141)

whilst the total energy Ẽ is Ẽ = E + mλ. This result is identical to the perturbational result
(93) when s = 0 and we use equation (87). In particular, when m = 0,

ε0 � min J (α, 0) ≈ λ − Z
√

2πλ. (142)

Therefore, the ionization energy Iionization, in dimensionless form, at large λ, is approximately
equal to

Iionization = εion − ε0 = Z
√

2λ
�

(
1
2 + |m|)
|m|! − λ|m| (143)

and in the special case of m = 0 we have

Iionization = εion − ε0 = Z
√

2πλ. (144)

In the case of small λ but any m the estimate is approximately, using equation (130),

Iionization = λ +
4Z2

(1 + 2|m|)2
+ o(λ2). (145)

In figures 2–5 we illustrate the quality and range of our analytical approximations along with
the numerical ‘exact’ results.

7. Semiclassical considerations and calculations

In this section we apply the leading order WKB approximation, in fact the torus quantization,
to our classical Hamiltonian (19), so that we have the two torus quantized classical closed-loop
action integrals equal to

1

2π

∮
pϕ dϕ = mh̄

1

2π

∮
pρ dρ =

(
n +

1

2

)
h̄ (146)

where m = 0,±1,±2, . . . and n = 0, 1, 2, . . . are the two integer valued quantum numbers.
Now we put e = −e0 and Q = +Ze0, B > 0, hence sign(eB) < 0, and find

n +
1

2
= 1

π

∫ x2

x1

dx

√
ε − m2

x2
+

2Z

x
− λ2x2

4
(147)

after using our dimensionless units introduced in section 2, as already used up to now, and
also understanding that ε is the reduced energy, the total one being ε̃ = ε + mλ. Here we have
two real turning points 0 < x1 < x2 < ∞, hence two caustics (hence the 1

2 on the right-hand
side of the second equation in (146) and on the left-hand side of equation (147)). The integral
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Figure 2. Estimations for the (reduced) ground-state energy in the case m = 1: 1, by variational
method, approximation for small λ, using the Coulomb-like trial function, by formula (130); 2, by
variational method, exact numerical evaluation, using the Coulomb-like trial function, by formula
(127); 3, by variational method, approximation for large λ, using the Landau-like trial function, by
formula (141); 4, by variational method, exact numerical evaluation, using the Landau-like trial
function, by formula (139); 5, by the minimum of the potential (131), numerically evaluated—for
the given range of λ it practically coincides with computing by formula (135); 6, by the harmonic
oscillator ground state above the minimum of the potential, formula (134), which for the given
range of λ practically coincides with (137); 7, by exact numerical results with 100 × 100 matrix
and Landau λ-basis (70) and (85); 8, by exact numerical results with 100 × 100 matrix and
Landau λ = 1 basis (70) and (85) with λ = 1; 9, by numerical results, diagonalization using the
(incomplete) Coulomb basis, with 100 × 100 matrix and the Coulomb basis given (105) and (106),
with (108). Note that lines 7 and 8 coincide for λ � 0.06, whilst 2,8 and 9 coincide for λ � 0.2;
just above them is line 4.
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Figure 3. Lines 7, 8 and 9 of figure 2, enlarged. Lines 7 and 8 coincide when roughly λ > 0.06,
line 9 is above them. We also see that lines 8 and 9 coincide for roughly λ < 0.15, which correctly
matches the small λ behaviour (going to −5/9 = 0.444 . . . at λ = 0).
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Figure 4. Lines 7 and 8 of figure 2, enlarged, in order to see the small deviations. They coincide
for roughly λ > 0.06. Line 8 goes correctly to −5/9 = 0.444 . . . at λ = 0, whilst line 7 fails to do
so at small λ.
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Figure 5. Estimations for the (reduced) ground-state energy for m = 1, for the large range of
λ ∈ [100, 150]: 2, by variational method, exact evaluation using the Coulomb-trial function,
by formula (127); 3, by variational method, approximation for large λ, using the Landau trial
function, by formula (141); 4, by variational method, exact evaluation for large λ, using Landau
trial function, by formula (139); 5, by the minimum of the potential (131), numerically evaluated;
6, by the ground state of the harmonic oscillator approximation above the minimum of the potential,
by formula (134); 7, by exact numerical results with 100 × 100 matrix and Landau basis (74) and
(85); 8, by exact numerical results with 100 × 100 matrix and Landau basis (74) with λ = 1. Note
that lines 3, 4 and 7 coincide for all λ in this range. They are exact (within the graphical resolution
of plotting).

is simple only in cases λ = 0 (pure Coulomb case) and Z = 0 (pure magnetic case). The
integrals are elementary and we obtain in each case the exact reduced energy spectrum, namely

ε = − Z2(
n + |m| + 1

2

)2 (148)
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x1
tx1 x2 x2

t
x

y

Figure 6. The turning points x1 and x2 as roots of the polynomial (152), as points of intersection
of y1 = −4m2 + 8Zx + 4εx2 and y2 = λ2x4. The zeros of y1 are denoted by xt

1 = x̃1 and xt
2 = x̃2.

for the former and

ε = λ(2n + |m| + 1) (149)

for the latter. These results coincide with the exact results (101) and (61), respectively. Of
course, the dimensionless total energy ε̃ = ε + mλ.

The general case of the torus quantization integral (147) cannot be expressed explicitly in
terms of complete elliptic integrals in an easy way, let alone in terms of elementary functions.
Some results, especially for the energy level density, have been obtained by Gallas and
O’Connell (1982a, 1982b), whilst the general case has not been treated analytically so far.
However, instead of trying hard to express the relevant integral

Y =
∫ x2

x1

dx

x

√
(x − x1)(x2 − x)(αx2 + βx + γ ) (150)

in terms of (complete) elliptic integrals, we shall elaborate on useful analytical approximations.
We shall denote by N = N(ε, λ) = Y/π , which is equal to the expression in (147), and

is the number of levels below the reduced energy ε at the given value of (the dimensionless
magnetic field strength) λ, at fixed value of the angular momentum quantum number m,
according to the Thomas–Fermi rule. Namely, N is equal to the classical phase space volume
below ε divided by the ‘quantum Planck cell size’ 2πh̄. Thus we compute the number of
levels below ε using the Thomas–Fermi rule

N(ε, λ) = 1

π

∫ x2

x1

dx

√
ε − m2

x2
+

2Z

x
− λ2x2

4
= 1

2π

∫ x2

x1

dx
1

x

√
−4m2 + 8Zx + 4εx2 − λ2x4

(151)

where x1, x2 are the turning points, i.e. the real solutions to

f (x) = −4m2 + 8Zx + 4εx2 − λ2x4 = 0. (152)

When λ is small enough, |m| > 0 and ε is negative and such that ε > −Z2/m2 the curves
y1 = −4m2 + 8Zx + 4εx2 and y2 = λ2x4 intersect as in figure 6, therefore x̃1 < x1 < x2 < x̃2,
where x̃1 < x̃2 are the solutions to −4m2 + 8Zx + 4εx2 = 0. However, if λ is large, then the
curves y1 and y2 do not intersect, which means that equation (152) has no real solutions.

To find the parametric set where the polynomial (152) has real roots, we note that when
λ decreases from infinity to zero the graph of y2 = λ2x4 goes down (becomes shallower) and
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at some value λ = λ0 the right branch of y1 tangents to y2 at a point with the abscissa x = x0.
The point x0 is a multiple root of f (x), therefore the resultant1 of f (x) and f ′(x) must vanish
at x0. Computing, we obtain

Res(f, f ′) = 4096(4ε4m2 + 4ε3Z2 − 8ε2m4λ2 − 36εm2Z2λ2 − 27Z4λ2 + 4m6λ4)

λ10
.

The resultant vanishes for

λ2
1 = 8ε2m4 + 36εm2Z2 + 27Z4 − Z(8εm2 + 9Z2)

3
2

8m6

and

λ2
2 = 8ε2m4 + 36εm2Z2 + 27Z4 + Z(8εm2 + 9Z2)

3
2

8m6
.

We denote by g1(ε) and g2(ε) the above numerators of λ2
1 and λ2

2, respectively. Then

g′
1(ε) = 4m2(4εm2 + 9Z2 − 3Z

√
8εm2 + 9Z2)

and

g′′
1 (ε) = 16m4

(
1 − 3Z√

8εm2 + 9Z2

)

hence g′′
1 (ε) < 0 on I = (−Z2/m2, 0) yielding g′

1(ε) > 0 and g1(ε) < 0 on I. Similarly we
can see that g2(ε) > 0 on I, thus equation (152) has two positive roots when λ < |λ2|.

Taking into account that for ε < 0,m > 0 and small λ the real roots of equation (152) are
close to the solutions of

−4m2 + 8Zx + 4εx2 = 0 (153)

that is,

x̃1 = −Z +
√

Z2 + εm2

ε
≈ x1 and x̃2 = −Z −

√
Z2 + εm2

ε
≈ x2 (154)

we obtain from equation (151)

N(ε, λ) ≈ 1

2π

∫ x̃2

x̃1

dx
1

x

√
−4m2 + 8Zx + 4εx2 = Z√−ε

− |m| (155)

which is in fact just the Coulomb case (101) and (148).
Consider now the case ε > 0. Obviously, if λ is large enough (curve 3 of figure 7) then

the curves y1 = −4m2 + 8Zx + 4εx2 and y2 = λ2x4 do not intersect, and, therefore, the
polynomial (152) has no real roots. However, when λ decreases the branches of y2 = λ2x4

go down and at some value λ = λ0 the right branch of y1 tangents to the right branch of y2

at some point with the abscissa x = x0. As above from the resultant of f and f ′ we find that
the curve y1 tangents to y2 when λ = λ0 = λ1 and λ = λ0 = λ2. Now note that for ε > 0 we
always have x̃2 < 0 < x̃1 and |x̃1| < |x̃2|. Therefore, taking into account that λ2 > λ1, from
figure 7 we see that for 0 < λ < λ2 equation (152) has two positive roots (when 0 < λ < λ1

then, in addition, two negative roots appear, but they are not of interest for us).
When ε is positive, one positive root of f (x) is

x1 ≈ x̃1 = −Z +
√

Z2 + εm2

ε
. (156)

1 The resultant of two polynomials is the determinant of a certain matrix composed of their coefficients, and the two
polynomials have a common zero if and only if their resultant vanishes. See e.g. (Cox et al 1992).
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Figure 7. xt
1 = x̃1 and xt

2 = x̃2 are the roots of equation (153), x1 and x2 are the roots
of (152), x0 is the abscissa of the tangent point of (153) and y2 = λ2

2x
4: 1, parabola (153)

y1 = −4m2 + 8Zx + 4εx2; 2, the graph of y2 = λ2x4 with λ < λ2; 3, the graph of y2 = λ2x4 with
λ > λ2; 4, the graph of y2 = λ2x4 with λ = λ2.
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Figure 8. The function N(ε) for λ = 1,m = 2: 1, N = ε
2λ

; 2, by formula (157); 3, by exact
numerical evaluation of integral (151).

The other is close to the root of the equation 4εx2 − λ2x4 = 0, that is,

x2 ≈ x̃3 = 2
√

ε

λ
.

Hence, from equation (151) we obtain

N(ε, λ) ≈ 1

2π

∫ x̃3

x̃1

dx
1

x

√
4εx2 − λ2x4 ≈ ε

2λ
+

Z −
√

Z2 + m2ε

π
√

ε
. (157)

In figure 8 we show the curves (151) and (157) for λ = 1 and m = 2.
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Figure 9. The function N(λ) for ε = 0,m = 0, 1, 2, 5, 10 (from top to bottom) and Z = 1. The
dashed lines are approximations by formula (158). The full lines are exact numerical evaluations
of integral (151). The abscissa is L = log(λ).

Consider now the case ε = 0. In this case the roots of polynomial (152) are

x1 ≈ x̃1 = m2

2Z
x2 ≈ x̃4 = 2Z1/3

λ2/3

and we obtain the estimation

N(ε, λ) ≈ 1

2π

∫ x̃4

x̃1

√
8Z − λ2x3

√
x

dx = 1

π

∫ √
x̃4

√
x̃1

√
8Z − λ2u6 du

= 4Z2/3

πλ1/3

∫ 1

λ1/3m

2Z2/3

√
1 − v6 dv = 2Z

2
3 �

(
7
6

)
√

πλ
1
3 �

(
5
3

) − 2m2F1
(− 1

2 , 1
6 , 7

6 , m6λ2

64Z4

)
π

. (158)

In figure 9 we show the approximation (158) to the exact value of the integral (151), and it is
seen that the quality increases with decreasing values of λ and |m|. In fact, for m = 0 the two
curves overlap.

8. Discussion and conclusions

The 3D hydrogen atom in a strong magnetic field is a nonintegrable and chaotic system
(Robnik 1981, 1982) which undergoes a transition from complete integrability (pure Coulomb
case) to ergodicity (at sufficiently high energies). It is a generic system, having the mixed
type classical phase space (Robnik 1998), and it is an example of classical (Hamiltonian) and
quantum chaos par excellence.

The 2D hydrogen atom in a strong magnetic field is integrable and even separable,
being effectively a one-dimensional system. However, its radial Schrödinger equation cannot
be solved exactly. Nevertheless, much analytical work can be done. We have calculated
analytically the matrix elements of the Hamilton operator in the Landau basis, which is a
complete basis in the Hilbert space, and performed its numerical diagonalization, and also



7950 M Robnik and V G Romanovski

described analytically the (asymptotic) structure of the Landau clusters of levels, which are
created when the Coulomb interaction of an electron in a magnetic field is switched on. (If
there is no Coulomb interaction, we have infinitely discretely degenerate Landau levels.)
The size of the clusters scales as

√
λ with the magnetic field strength λ = B/B0, where

B0 = 2.3506 × 109 G, and the levels in the cluster at fixed λ approach the accumulation
point (= Landau level) as 1/

√|m| when the modulus |m| of the canonical angular momentum
quantum number (m = 0,±1,±2, . . .) goes to infinity (and the electron is receding to infinity).
It is important that the dependence of the representation matrix (85) on magnetic field strength
λ and the charge Z is known, so that it must be calculated only once. Then the eigenenergies
can be obtained by a numerical diagonalization of the matrix at any desired value of λ and Z.

Moreover, we have calculated the matrix elements of the Hamilton operator in the Landau
λ = 1 basis, which is better than the λ-Landau basis at small λ and negative energies
(Coulomb-like regime).

Furthermore, we have calculated the representation matrix of the Hamiltonian in the
incomplete Coulomb basis, which is useful for treatment of the small perturbations of Coulomb
levels in a weak magnetic field.

We have also used the variational methods to estimate the ground state (its upper bound)
and this has been done analytically for small λ � 1 and for large λ � 1. The results agree
perfectly with the first-order perturbation theory in both cases. The semiclassical analysis of
the problem has been outlined and the analytical approximations of the central classical action
integral (within the WKB leading term) have been worked out, yielding good approximations
for the density of levels.

The main conclusion is that at large values of λ > 1 we should use the λ-Landau basis,
whilst for small λ < 1 and low negative energies the λ = 1 Landau basis is preferred. In each
case the representation matrix of the Hamilton operator in the given basis is known analytically
exact.
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Appendix

The following formula for an integral containing confluent hypergeometric functions is
obtained in (Landau and Lifshitz 1996, pp 666–67):

Jν =
∫ ∞

0
e−kzzν−1 [F(−n, γ, kz)]2 dz = �(ν)n!

kνγ (γ + 1) · · · (γ + n − 1)

×
(

1 +
n−1∑
s=0

n(n − 1 · · · (n − s)(γ − ν − s − 1)(γ − ν − s) · · · (γ − ν + s)

[(s + 1)!]2γ (γ + 1) · · · (γ + s)

)
.

(A.1)

Applying the algorithm of Petkovšek et al (1996, p 36) to equation (A.1) yields

Jν = �(ν)n!

kν(γ )n

(
1 +

n(γ − ν)(γ − ν − 1)

γ
4F3

[
1 1 − n γ − ν + 1 ν − γ + 2
2 2 γ + 1

; 1

])
(A.2)
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Taking into account the contiguous relation CO1 of the package HYP (Krattenthaler 1995),

r+1Fs+1

[
1 (A + 1)

2 (B + 1)
; z

]
=

∏s
i=1 Bi

z
∏r

i=1 Ai

(
rFs

[
(A)

(B)
; z

]
− 1

)
we obtain from equation (A.2)

Jν = �(ν)n!

kν(γ )n
3F2

[−n γ − ν ν − γ + 1
1 γ

; 1

]
. (A.3)
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